Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
نویسندگان
چکیده
A critical disadvantage of primal-dual interior-point methods compared to dual interior-point methods for large scale semidefinite programs (SDPs) has been that the primal positive semidefinite matrix variable becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general method of exploiting the aggregate sparsity pattern over all data matrices to overcome this disadvantage. Our method is used in two ways. One is a conversion of a sparse SDP having a large scale positive semidefinite matrix variable into an SDP having multiple but smaller positive semidefinite matrix variables to which we can effectively apply any interior-point method for SDPs employing a standard block-diagonal matrix data structure. The other way is an incorporation of our method into primal-dual interior-point methods which we can apply directly to a given SDP. In Part II of this article, we will investigate an implementation of such a primal-dual interior-point method based on positive definite matrix completion, and report some numerical results.
منابع مشابه
Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results
In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semidefinite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semidefinite matrix completion, and it can be embodied in two different ways. One is by a ...
متن کاملExploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion
Abstract A basic framework for exploiting sparsity via positive semidefinite matrix completion is presented for an optimization problem with linear and nonlinear matrix inequalities. The sparsity, characterized with a chordal graph structure, can be detected in the variable matrix or in a linear or nonlinear matrix-inequality constraint of the problem. We classify the sparsity in two types, the...
متن کاملExploiting Structured Sparsity in Large Scale Semidefinite Programming Problems
in linear and nonlinear inequalities via positive semidefinite matrix completion " , Mathematical Programming to appear.
متن کاملExploiting Sparsity in Semideenite Programming via Matrix Completion Ii: Implementation and Numerical Results
In Part I of this series of articles, we introduced a general framework of exploiting the aggregate sparsity pattern over all data matrices of large scale and sparse semideenite programs (SDPs) when solving them by primal-dual interior-point methods. This framework is based on some results about positive semideenite matrix completion, and it can be embodied in two diierent ways. One is by a con...
متن کاملExploiting Sparsity in Semide nite Programming via Matrix Completion I : General Framework ?
A critical disadvantage of primal-dual interior-point methods against dual interior-point methods for large scale SDPs (semidenite programs) has been that the primal positive semidenite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidenite matrix completion, this article proposes a general method of exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 11 شماره
صفحات -
تاریخ انتشار 2001